If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-900=0
a = 7; b = 0; c = -900;
Δ = b2-4ac
Δ = 02-4·7·(-900)
Δ = 25200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{25200}=\sqrt{3600*7}=\sqrt{3600}*\sqrt{7}=60\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60\sqrt{7}}{2*7}=\frac{0-60\sqrt{7}}{14} =-\frac{60\sqrt{7}}{14} =-\frac{30\sqrt{7}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60\sqrt{7}}{2*7}=\frac{0+60\sqrt{7}}{14} =\frac{60\sqrt{7}}{14} =\frac{30\sqrt{7}}{7} $
| y2+23y+102=0 | | 20i-8=112 | | 16x^2=9x^2+729 | | 7x^2-729=0 | | 8÷5x=12÷7 | | n(n+1)/2=66795 | | 2x+12+4x+12=180 | | 0,3x+1,6=10 | | 4x-(-2x+10)=2 | | t/16+6=7 | | 5y+9=4y-2 | | 2^(3)-4(5-3)^(3)=-8x | | 0.005x=30 | | (x+6)(x+3)=36 | | 20-7x=6x² | | 28=7x-5+2x | | -3a+38=20 | | 5x²+19x+12=0 | | 15-3n=-9 | | 7p-9=110 | | 18x–4=5x+11 | | 77=1/2h(77+7) | | Y+12x=29 | | -4(x—3)=4 | | 5t-(2t-14)=3t-14 | | -1(5y+-1)=-24 | | 8x-7=7x+2=10x=65 | | 3(3y+10)=30 | | k^2-6k=-7k | | 10x=20x-20-2=188 | | 1/2x+22=x | | 4x-5=195 |